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In this paper, we introduce a fully spectral solution for the partial 
differential equation ut + UUx + vu,o, + pUxxx + AUxxxx = 0. For periodic 
boundary conditions in space, the use of a Fourier expansion in x 
admits of a particularly efficient algorithm with respect to expansion of 
the time dependence in a Chebyshev series. Boundary conditions other 
than periodic may still be treated with reasonable, though lesser, 
efficiency. For all cases, very high accuracy is attainable at moderate 
computational cost relative to the expense of variable order finite 
difference methods in time. © 1992 Academic Press, Inc. 

I. INTRODUCTION 

Spectral (global) methods for resolving spatial structure 
in the numerical solution of partial differential equations 
are now at a mature stage of development. The journal 
literature is fairly extensive even if the number of scholarly 
treatises is minuscule in comparison to the literature on the 
more widely used finite difference and finite element 
methods. The application of spectral methods to resolution 
in the time domain is less well explored, but it is natural to 
expect that this method is well suited to applications in 
which extreme accuracy is desired. The articles appearing in 
[-1] make it clear that the efficiency and robustness of a 
spectral approach in time remain to be established for 
a broad class of problems. This paper is intended to 
contribute to that end by focusing on the details of two 
particular applications clarifying, one hopes, the general 
principle with an illustrative example. 

A familiar result, cited to justify spectral expansions in the 
spatial domain, is the well-known asymptotic exponential 
convergence rate for spectral basis functions which are 
the solution of a singular Sturm-Liouville equation. For 
example, the function f ( x ) =  e -~x has as its Chebyshev 
expansion, 

f ( x )  = ~ fk T~(x), where fk = 2 Ik(fl) (1) 
k=0 7~Ck 
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(where ck = 1 except for Co = 2), but a glance at a set of 
tables shows that exponential decay does not immediately 
obtain for the coefficient spectrum. For problems in which 
it is not feasible to increase the resolution owing to an 
excessive increase in computation, coordinate transforma- 
tions defining a one-to-one mapping given by some z(x) 
are one obvious notion for improving convergence. In 
the example above there is obviously a map such that 
f ( z (x) )  = x so that the fk's vanish identically for k > 1. For 
some equations, a simple analytic mapping is useful and 
then the differential equation may be recast in the new coor- 
dinates in exact terms. A more general approach is to 
update the mapping as part of an iterative solution 
method--a spectral analogue of adaptive mesh refinement 
for finite difference and finite element formulations. This 
trades off the problem of resolvingffor one of resolving the 
map, z. An optimal coordinate transform would balance the 
resolution required of each. There are many interesting 
theoretical issues of approximation theory including the 
asymptotic rate of convergence of an optimal map which 
seem to be little explored. 

An alternative strategy which shows great promise is 
spectral element domain decomposition, as in [2]. Various 
strategies for subdividing the domain are easily envisioned, 
and the possibility of an adaptive version is also apparent, 
but optimal algorithms of any generality remain to be 
developed. The general expectation, and our motivation 
here, is that the order of increase in accuracy is algebraic in 
the number of elements and exponential (at least for C ~ 
functions) in the order of the basis set on each element. 
These considerations are of natural interest in connection 
with the present work, owing to the fact that a spectral 
method in time will nearly always be a spectral element 
method; i.e., constrained by the spectral radius of some 
iterative matrix operator, it will generally be necessary to 
subdivide the time domain into some number of elements. 1 

We exploit the potential for accuracy of spectral methods 
in treating two problems. A first application of the spectral 

1 In experiments so far, we have only enforced C O continuity of adjacent 
elements, the natural choice for a first-order evolution operator. 
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approach is to the family of partial differential equations of 
the form: 

u, + (u - c) u~ + VUxx + lzU~xx + 2Ux~xx = 0 (2) 

for the case of periodic boundary conditions. This equation, 
first advanced by [3], possesses in various limits the well- 
known and much studied cases of integrable Korteweg de 
Vries ( v=2=0) ,  chaotic Kuramoto-Sivashinsky (#=0),  
and classical Burgers (p = 2 = 0) equations. The full equa- 
tion is the subject of more recent study exploiting only the 
Galilean and translational invariances of the generic case, 
for example, [4-7]• In [7], the imposition of periodic 
boundary conditions permits one to make contact in the 
limit of a large period with a variety of homoclinic orbits of 
the reduced ordinary differential equation obtained from 
the similarity variable, x - c t ,  characterized (in contrast 
with the special case of integrability and consequent scale 
invariance) by a discrete spectrum of allowed values of c 
relative to a fixed reference frame• Additionally, and more 
important in general application, for lengthy integration the 
choice of periodic solutions ensures that the endpoints act 
as neither source nor sink. This issue is a potential complica- 
tion of alternative conditions such as absorbing boundaries. 

Even if, owing to an implicit treatment, they impose no 
stability constraint, the fourth-order spatial derivatives in 
(2) can uncomfortably restrict the size of the time step 
required to achieve a given accuracy• The virtue of the spec- 
tral method is that local accuracy in x and t on the order of 
machine accuracy is attainable at moderate computational 
expense• Naturally the notion of global error does not play 
so pivotal a role in the extended integration of exponentially 
sensitive, i.e., chaotic, systems, since word length alone 
provides a typically brief upper bound for times beyond 
which detailed numerical comparison as between machines, 
let alone other algorithms on a given machine, is rendered 
meaningless. For particular cases of (2) which exhibit 
special properties, such as integrability, one may speak of 
various statistical measures of evolution and then particular 
means such as the symplectic integration scheme devised by 
[8] are useful in producing results more faithful to sym- 
metries of the original continuous problem than naive 
integration schemes• For the generic equation (2), of course, 
one does not have the luxury of a large number of confining 
constraints serving to define a preferred class of time step- 
ping algorithms• For the Kuramoto-Sivashinsky problem, 
[9] notes a variety of problems stemming from insufficient 
accuracy in integration, among them, states near the 
transition to chaos incorrectly rendered stable as an artifact 
of numerical error• They suggest local (absolute) error 
control on the order of 10 lO is minimally necessary 
to avoid computations which are even qualitatively mis- 
leading• 

Although not as efficient numerically for reasons to be 

discussed, we show also the application of the method to the 
special case of Burgers equation given by 

ut + uux = VUxx. (3) 

in a domain with homogeneous, rather than periodic, 
boundary conditions. The results are compared to those 
from a survey paper by [10] for a specific test problem pos- 
sessing an explicit solution generated from the standard 
Cole-Hopf transformation. Comparison with the exact 
results in that case will allow us to assess the accuracy and 
efficiency with less heuristic uncertainty. It emerges that 
computation of the expression for the exact solution is a 
more exacting process than generating the same accuracy 
by spectral means. 

II. THE METHOD 

To solve (2), we introduce the representation 

M - - 1  N 

u(x, t ) =  ~, Z u+,kTj(~) e ikx, (4) 
j = 0  k ~ l  

where ~ = 2 ( t - t i ) / ( t i + l - t i ) - i  and T i is the usual 
Chebyshev polynomial. The function u will satisfy an initial 
condition u(x, - 1 ) = U(x, ti). The tg's are at discrete inter- 
vals chosen to be roughly as large as permitted by M, 
consistent with convergence to some prespecified tolerance. 

Substituting (4) into (2) and using orthogonal projection 
produces M N  coupled quadratically nonlinear algebraic 
equations which are of the form: 

~(u): ,k  =- D:,zu,,e + ik/2(u • u)j.k 

- (ick + vk z + i ~ k  3 - 2k 4) u j ,  k = 0. (5) 

The matrix D is standard (see [11]). It is of the form 

/ 0 1 0 3 0  5 o . . . \  

) 0 0 4 0 8  0 12 

2 0 0 0 6 0 1 0  0 

t i + l - t i  0 0 0 0 8  0 12 " (6) 

0 0 0 0 0 1 0  0 

As is common in the application of Chebyshev polynomials, 
we use the tau method and so we discard the N equations 
corresponding to the projection with TM_ 1, replacing these 
with the N equations 

M - - I  

( - 1 )J uzk = Uk, k = 1 ..... N, (7) 
j=0  

where the Uk are the Fourier expansion coefficients of 
U(x, t/). 

Most of the computation time for this problem is in com- 
puting the two-dimensional convolution of uux. To avoid 
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aliasing error in space, we use the 3 rule to transform onto 
3 (N+  1) real space points in x. Although for sufficiently 
large M it would be advantageous to do the same in time, 
in fact, it proves more efficient to use the C(M 2) algorithm 
based on the elementary identity TIT1= ( T j + z +  Tij  tl)/2 
up to fairly large M. The crossover point will depend upon 
the precise efficiency of the software available to the user. In 
our computations, it was about M =  32. The IMSL F F T  
and cosine transform routines, in particular, seem to execute 
rather slowly, especially on the Sun 4/260. For example, a 
fully unrolled 48-point Winograd version of the F F T  
executed in 9.6 ms compared to 50.3 ms for the IMSL 
routines F2TR(B, F). The direct time convolution is best 
coded for a vector machine by forming a matrix operator for 
the first member of the convolution, ~k (the real space half 
transform at x = xk, k = 1, ..., 2 N +  2), and then contracting 
with the M component vector for the second member. 

Our solution of (5) is based upon Newton's method; thus 
we proceed in iterative fashion to solve 

D j  .%,(n + 1) ,zv-~,~ + ik(u(n) . 6u(n+ 1)~ 
Pj, k 

- (ick + vk 2 + i#k  3 - 2k 4) 6 u ~  + 11 

= - (8 )  

,,(, + 1) _ ,,(,) ,%,(, + 1) Note that 6u satisfies and then we set ~j,x - ~j,k + ~-j,k • 
a homogeneous boundary condition at r = - 1. We start the 
algorithm with,  (o) _ 60,j Uk. ~j, k - -  

Now the solution of (8) is yet too cumbersome to permit 
rapid solution, since the convolution term couples all M N  

equations. We thus introduce a subiteration scheme in the 
form 

D ~,,(, + 1,m + 1) _ _  (ick + vk  2 + iyk  3 - 2k  4) ~ j , k  J, l W ~ l , k  .~,,(n + 1,m + 1 ) 

= _ 5f(uI,,))j,k _ i k (u In) ,  3u(,~+ 1,,~1~ Jj, k (9) 

which supplants the use of (8). Under normal circumstan- 
ces, the nested iteration on m in (9) converges in three to five 
iterations to the equivalent solution of (8) for ,%,(~+ 1) but ~ j , k  

without requiring direct inversion of the coupled implicit 
operator. Convergence in m is followed by a step in n. There 
is a potential trade-off to consider in optimizing the total 
operations count. Fewer iterations of the inner loop in m 
slow the convergence of the Newton's method iteration in n 
while more inner iterations, up to a point, accelerate the 
outer loop. Over a fair range of choices, however, the total  
number of iterations required is approximately constant so 
that execution time for the algorithm is relatively insensitive 
to the choice of inner iteration loop count. However, note 
that each step in n requires two forward transforms and one 
reverse, while stepping in m needs only one forward and one 
reverse since u ('~ remains fixed; thus there is slight advan- 
tage to erring on the high side in iteration of the inner loop 
since convolution accounts for nearly all of the computation 
time. 

Convergence in Newton's method is monitored by the 
quantity 

A --  uj k. ( 1 0 )  

If A exceeds one, the time step is halved as this normally 
denotes divergence of Newton's method. Provided 
e < A < 1, where e is a specified tolerance, we continue with 
Newton's method at the current time step unless the total 
number of steps has become excessive. As soon as A < e, we 
compute the spectral indicator 

A s = m a x  luM, kl /max luj, kl. (11) 
k j < M , k  

Now ifA > A s ,  we halve the time step, and use for our initial 
guess a map from the solution already found on the interval 
[ - 1, 0] onto the interval [- - 1, 1 ]. This projection merely 
requires N matrix multiplications of order M and the 
appropriate matrix operator is precomputed at the start of 
the program. The resulting initial guess usually converges in 
one or two more iterations of Newton's method. (The same 
projection method is employed once at the end of the run if, 
as normally will occur, the final time step does not coincide 
with the specified interval for integration.) 

Provided A ~< A s, we accept the answer for u on the inter- 
val [-ti, ti+ 1], and evaluate u(x,  1 ) to provide the initial con- 
dition for the next interval. When A <~ e s A s ,  then our time 
steps are deemed too small, and the next interval is provi- 
sionally doubled in size. The choice of es is M dependent. 
For large M, it must be fairly small, since the effect on the 
spectral decay of doubling the time interval can be substan- 
tial. Typical values are ~s = 10 -3 for M =  17 and 2 x 10 -2 
for M = 9 for the runs in Section III. In those runs with an 
average time step, (ti+ 1 - ti), of At, variation in the spatio- 
temporal evolution of the solution permits intermittent 
periods with steps as large as 16A t and requires occasional 
isolated steps as small as At/16.  Obviously for larger M, one 
could change the step size by a factor smaller than 2 for 
greater potential efficiency, but we have not explored that 
possibility. 

The solution of (5) is now usefully decoupled into N 
separate problems of order M. 2 In a periodic domain, this 

2 In what follows, we now wish to distinguish the matrix dimension, 
which we have so far termed M, from the max imum order polynomial 
which differs by one. As in F O R T R A N  IV, one sweated constantly to dis- 
tinguish indexing of arrays from 1 to M from the order of polynomial 
represented, 0 to (M - 1 ), so too here we would be faced with unreasonable 
typographic inelegance to make the same distinction. Still, to introduce yet 
another variable for quantities so trivially related seems unnecessarily 
prolix. Thus we adopt the expedient of employing the same symbol to mean 
two different things. Simple logic will discriminate usage by context. 
Although the strategy may seem perverse, as Joe Keller has pointed out, we 
use an enormous variety of ways to rewrite zero and nobody seems to 
object to that practice. 
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decoupling obtains by virtue of the fact that the linear 
operators are all constant coefficient and are thus diagonal 
for a basis set of complex Fourier modes. The N decoupled 
problems, A.(k)uk=bk, k = l  ..... N, each assume the 
following form for the matrix operator, 

.~(k) = 

0 ~k 4 0  8 0  

0 0 2k 6 0 1 0  

0 0 ... 0 0 2 k  

1 --1 1 - - 1  1 

(12) 

(Note that we absorb the earlier prefactor 2/(ti+ 1 - ti) into 
the definition of 2k. Also, the last row of A(k) is replaced 
with coefficients of T j ( - 1 ) =  ( - 1 )  j to enforce the initial 
condition on u.) This matrix is easily reduced to 
quasitridiagonal form by elementary row operations and 
would seem straightforward to solve by simple Gaussian 
elimination of the last row. Unfortunately even for M = 9, 
the condi t ion number of the resultant matrix can be 
astronomical for small 2k; for example, 2k = 0.01 leads to a 
condition number of 1 0  23 . 

Contingent upon a fixed eigenspectrum for the implicit 
spatial operator, an efficient ((9(M)) and highly accurate 
solution for all 12k[ is found as follows: As noted above, 
elementary manipulation of the matrix suffices to bring it 
and the right-hand side to the respective forms: 

f l - 1  ... 

2 k 1 - 2 k / 2  

0 2k 4 

0 0 2k 

0 0 ... 

0 0 ... 

0 0 . . .  

1 --1 1 - 1  \ 
1 

0 0 0 .. .  

- 2 k  0 0 ... 

6 - 2 k  0 .. .  

2k 2 M - 4  -- 2k 
0 2k 2M -- 2 
0 0 2k 

f bo-b2/2 
b I - b  3 

b2 -- b4 

bM_3-bM 1 
bM-2  

bM 1 

0 

0 

2M 

(13) 

We term the matrix above A and the vector b. We next 
introduce an auxiliary tridiagonal matrix, defined as 

T =  

1 --2k 

2k 1 

0 2k 

0 0 

0 0 \oo 
0 0 

-.. 0 0 0 0 \ 

--2k 0 0 0 --. 

4 --2k 0 0 .. .  

2k 6 --2 k 0 .. .  

2k 2 M - 4  --2k 0 

0 2k 2M--  4 - 2k 

0 0 2k 2M ] 
/ 

¢ 

(14) 

Next define C as C = T -  1A - I and also Xo = T lb. Now let 
S = - C(I + C) ~ and denote the fourth and last columns of 
the matrix S by $4 and SM, respectively. Finally, we need a 
vector v a" defined by 

[0 (1--£k) _ 1  1 - 1  1 . . . ( - 1 )  M-~ 0]. (15) 

In terms of these quantities, the exact solution of Ax = b 
may be written as 

X = X o +  (V T "Xo) S 4 + x o ( m  ) S M -  (Xo(3)/2) el, (16) 

where el denotes an M-component unit vector with first 
component 1 and xo(k) the kth component of the vector x0. 
The key to this algorithm is that the matrix C, as well as its 
iterates, are all rank two. This fact is what permits us to find 
an explicit solution in the form above. 

To employ this result, for each (complex) eigenvalue, )'k, 
we precompute and store $4 and SM as well as two vectors 
of constants arising from Gaussian elimination without 
pivoting in the inversion of T. The number of eigenvalues is 
the product of the spatial resolution multiplied by the 
allowed number of halvings and doublings of the nominal 
time step. In practice this memory requirement is moderate 
and the overhead for the computation of $4 and SM is slight, 
but an incremental computational saving is possible, since 
these computations are performed only as the indicated step 
size is invoked for the first time. Assuming the values of $4 
and SM are stored in advance, the present algorithm. (16) 
executes in virtually the same time as direct elimination 
with back substitution and has, moreover, the virtue of 
producing accuracy indistinguishable from that of the 
IMSL routine DLSARG which uses Gaussian elimination 
with pivoting and subsequent iterative refinement. Of the 
total CPU time per step required in solution of (5) on a 
Cray Y-MP, less than 8 % is required for inversion of A - -  
nearly all the remaining 92 % is spent on the convolution uux. 

When ~'k is large, the accurate direct solution of (13) 
noted above is effected by permuting the rows by one to 
bring the first into the last position• The first M -  1 entries 
in this row are then eliminated and the solution found after 
back substitution. This approach fails for moderate 2k with 
the useful cutoff depending upon the dimension of A. 



92 IERLEY, SPENCER, AND WORTHING 

For example, for M =  9, the direct solution yields relative 
errors less than 10 10 only for [2kl > 1, while at M =  17, a 
reasonable cutoff is 12~t > 10. At small values of2k, a simple 
and useful iterative strategy is based on the splitting 
A = M + N, where N contains all the terms proportional to 
2k. With extensive iteration this will converge for 12k[ as 
large as 0.5, but in practical terms is best restricted to values 
of 0.05 or smaller. (An asymptotic estimate of the spectral 
radius of the iteration matrix for small 12~1 correctly 
anticipates an interesting variation of radius with phase 
angle in the complex plane, but space does not permit dis- 
cussion here.) For the class of problems considered in this 
paper, neither the small nor the large 2~ algorithm confers 
any advantage over (16) but, as we note in the conclusion, 
for two-dimensional problems the memory requirements of 
(16) may become excessive at high spatial resolution. In that 
instance, a hybrid algorithm using direct solution for large 
2g, (16) at moderate values, and splitting with iteration at 
small 2k would seem to optimize performance for fixed 
memory. 

III. APPLICATION TO THE 
K U R A M O T O - S I V A S H I N S K Y  PROBLEM 

o 
,4 

c o -  

o .  
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o ,,z- 

U3 
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I 

001 o02 0.'03 o.'04 
t 

FIG. 1. Mode one amplitude in the evolution of (2) from the initial 
condition given in (17). This is to be compared with [9, Fig. 26]. 

A test problem for the Kuramoto-Sivashinsky problem is 
provided by reference to the work of [9].  Our equation is 
the differentiated form of theirs, thus as an initial condition 
to reproduce the modal amplitudes of their Figs. 26 and 27, 
we set 

u(x, 0) = - 18.3 sin 6x + 0.1 cos x (17) 

and choose v = 1, # = 0, and 2 = 4/c~ (where c~ is taken from 
their example and has a Value of 206.25). The domain is 
[-~,~]. 

At first glance it might appear rather surprising that the 
most demanding portion the numerical evolution of this 
problem is the vicinity of t = 0, a fact not at all apparent 
from examination of Fig. 1. A way of understanding this is 
that the nonlinear time dependent problem accumulates a 
statistical distribution parameterized by time of the spatial 
spectra. Almost none of the members of this ensemble have 
all their energy content in the first few harmonics. 

For the purpose of comparison to establish timing 
figures, a finite difference code based upon repeated 
Romberg extrapolation to a maximum order of 14 was 
implemented as likely being the most efficient finite dif- 
ference based solution method for very high accuracy 
solutions. (The standard IMSL package DIVPBS was 
hopelessly inefficient for this purpose.) This finite difference 
method tends to produce a solution with local error 
everywhere approximately equal to the specified tolerance 
while the spectral method, as earlier noted, achieves its 
tolerance only rarely (A = A s) and is normally much better; 

thus a local tolerance for Romberg integration which was a 
factor of approximately 20 smaller than that given for the 
spectral integrator was required to produce a solution at the 
end of the test integration period (t = 0.2424) of comparable 
spatial error. Using a tolerance of 10 10 for the spectral 
integration resulted in a solution at the final time with error 
evidently bounded by 3.7 x 10 -7 in a time of 24 s on the 
UCSD Cray Y-MP. Similar accuracy from the Romberg 
scheme required about 200 s. This disparity was quite 
comparable to the factor of 10 found in timings of both 
algorithms on a Sun 4/260. 

Error curves from a number of numerical solutions for 
varying tolerance, spatial resolution, and machine are 
illustrated in Fig. 2. 3 Our measure of error is the common 
logarithm of the modulus of the difference between a given 
approximate solution for the mode one amplitude (e.g., 
Fig. 1) and a higher precision solution regarded as "exact" 
by comparison. For a problem such as this where we have 
no a priori knowledge of the correct solution, it is normally 
the case that our only indication of the accuracy of the 
results is the internal consistency of successive computa- 
tions. Figure 2 shows such a pattern. For our "exact" solu- 
tion we use the result of integration from a Sun 4/260 with 
47 modes in x and a local tolerance of 10 -13. The curve 
labeled "1" is, in fact, a superposition of two curves as may 
be seen at large t where they diverge. This pair of runs shows 

3 In this section M is held fixed at 17. In the next section we explore in 
more systematic fashion the convergence in M. 
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FIG.  2. Variations in accuracy due to varying tolerance, spatial 
resolution, and machine. (Vertical axis in units of loga0 of the absolute 
value of the error in the amplitude of mode one.) 

-o\ 

FIG. 3. Typical scattering experiment, two particles to four, in the 
solution of (2) for the parameters (v,/~, 2) equal to (2, 1, 1 ). The domain is 
[ - 1 5 ,  15]. Note the far more regular solution away from the chaotic 
realm of Kuramoto and Sivashinsky. Far larger time steps are possible 
making high accuracy solutions very cheap to compute. 

the evolution of a 31-mode model run on the Cray, and for 
comparison to see the effect on roundoff error, a Sun 4/260. 
The 4-bit longer mantissa of the latter gives a perceptible 
improvement in roundoff error. The explicitly allowed local 
error of 10 -1° leads to perceptible phase error by about 
t = 0.033 (while the amplitude error, up until that time, is 
approximately constant), but the subsequent deviation of 
the pair of curves only slightly later at t = 0.035 suggests 
that even (Cray) roundoff perturbations on the order of 
10-14 have begun to make their influence felt, so that the 
autonomous finite order system (5) has, for practical 
purposes, become numerically unpredictable. Curve "2," 
(a Cray run, as are curves 3 and 4) shows the effect of 
increasing the spatial resolution to N = 47 to be principally 
an amplitude adjustment. In curve "3," the local tolerance is 
decreased t o  10 -12 , producing approximately an order of 
magnitude improvement in the solution, but a further 
decrease to 10-13 shows from curve "4" that there is essen- 
tially no gain in accuracy. Further accuracy is precluded by 
roundofferror. This is also suggested by the consistent offset 
from curve "Y' of curve "5", run on a Sun 4/260 at a 
tolerance of 10-12. We conclude from these results that the 
drop in the amplitude of mode one from [-9] which com- 
mences in their figure at about t = 0.035 is actually deferred 
until some time after 0.041. Trying to fix this time with preci- 
sion greater than ~0.005 appears not to be possible with 
double precision arithmetic (Cray single precision). 

Before passing to the next section, it is worth noting that 
evolution of (2) for generic values of the parameters leads to 
far more regular behavior. A sample run using the 
parameters (v, #, 2) equal to (2, 1, 1 ) is presented in Fig. 3. 
The sharply localized solitary waves evolve in an interesting 

fashion, which is the subject of current study. Fortunately 
the numerical exploration is computationally much cheaper 
to conduct as large time steps are possible. Away from the 
Kuramoto-Sivashinsky limit, it is important that such com- 
putations be done with an appropriate choice of the phase 
speed, c. Failing to do the computation in a moving 
reference frame otherwise unduly restricts the time step. The 
value of the phase speed can be extracted quite accurately 
from the evolution of the complex phase in any of the first 
few Fourier modes in th e expansion of u and used to con- 
tinually update the reference frame as the calculation 
proceeds. 

IV. APPLICATION TO BURGERS EQUATION 

In [10], Burgers equation is solved for Ixl ~< 1, t > 0, with 
boundary conditions u( + 1, t )=  0 and an initial condition 
of u(x, 0) = - s i n  ~x. 4 The viscosity is fixed at v = 10-2/~. 
Evolution is followed in most of the numerical experiments 
to a time of 3/m The purpose of that paper is to compare 
spectral methods in space with finite difference methods for 
a problem, as the above, in which regions of sharp variation 
occur. The x-t solution surface (obtained here by a 
Chebyshev series in both variables) for 0~<x~< 1 and 
0 ~< t ~< 1 is shown in Fig. 4. (The solution is antisymmetric 
on [ - 1 ,  1].) 

4 Somewhere between our initial study of Burgers equation and the 
detailed computations for this work, the minus sign of the initial condition 
given in [10] was lost. Since the sign change is inconsequential and Fig. 4 
seems marginally more esthetic plotted as a hill than a valley, the reader 
may simply invert either this article or [10] in comparing the two. Our 
thanks to a sharp-eyed referee for spotting the discrepancy. 
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FIG. 4. Solution to Burgers equation with v = 10 2/7[ for 0 ~< t ~< 1 and 
sin nx initial condition. 
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The results for the L 2 e r r o r  defined by 

1 f, T 2-T -1 dX fo dt (u(x, O-a(x ,  0) 2 (18) 

(where fi is the exact solution) are shown in Figs. 5 and 6 for 
a sequence of experiments as the above, except for v = 0.1 
and T =  1. In the first of these, the spectral order of each 
element in time is four. (Spatial resolution was fixed at 
sufficiently high order so as to make a negligible contribu- 
tion to the error.) The solution was computed for a number 
of intervals ranging from 1 to 128 and exhibits fourth-order 
accuracy. The second computation used a single time step, 

FIG. 6. The L 2 error as defined in the text shown as a function of 
increasing order of the basis set. The semi-log plot suggests an exponential 
dependence of the error. (Departure of the last point reflects slight influence 
of spatial error.) 

with order varied from 4 to 24. Figure 6 displays the result- 
ing expected exponential convergence. Two representative 
x - t  error surfaces are shown in Figs. 7 and 8. The occurrence 
of interior grid scale high frequency ripple in such plots 
usually indicates which variable is underresolved. Figure 7 
shows underresolution of t, while in Fig. 8, error is limited 
by spatial resolution. The exact solution given in [10] for a 
sin ~x initial condition appears in two forms: a series, (2.4), 
useful for v > 0.05 and an integral representation, (2.5), use- 
ful for v ~< 0.05. Reference [10] uses Hermite integration to 
generate results accurate to seven digits. For the present 
work requiring higher precision, 48-point Hermite integra- 

m.. 

C2~ 

t6 
al, 

Q 

I 

I 

O 

FIG. 5. 
decreasing time step size. Note the algebraic dependence shown clearly by 
the log-log plot. 
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FIG. 7. The error in the computed spectral solution corresponding to 
the fourth data point in Fig. 6, with M = 16. Note the higher frequency in 
the t direction showing the error to be dominated by inadequate resolution 
in t. 
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FIG. 8. The error in the computed spectral solution corresponding to 
Fig. 6, for M =  32 (not plotted). Now the error is dominated by inadequate 
spatial resolution. 

tion was satisfactory for runs at small viscosity but accuracy 
commensurate with the limiting precision that is possible 
with the use of spectral methods does not appear to be 
achievable with higher order Hermite integration of (2.5), 
owing to accumulation of roundoff error. 

To adapt the discussion from Section II, here we have one 
added element that is required for the solution, explicit 
matrix diagonalization in x. This stems from the use of 
Chebyshev polynomials in x for which the derivative matrix 
operator, as we have seen in II, is upper triangular. As first 
employed for Chebyshev polynomials in the solution of the 
Poisson equation by [12], the linear spatial operator is 
decomposed as 

eAe -I  (19) 

where e is the eigenvector matrix, A is a diagonal matrix 
with entries 2~, 22 .... ,2N, and e-~ is the inverse of the eigen- 
vector matrix. (For the Fourier case, e =/ . )  Here we incur 
the added overhead associated with casting left- and right- 
hand sides of (9) into the transform space by application of 
the matrix e-~. This adds (9(MN 2) operations to each itera- 
tion of (9). In contrast, periodic boundary conditions 
coupled with a Fourier representation permit marked 
efficiency of solution. For a vector machine, this operational 
distinction is not a crucial, since the matrix multiplications 
are typically fully vectorizable. 

V. D I S C U S S I O N  A N D  C O N C L U S I O N S  

A more ambitious approach for the problem of spectral 
methods in time is that of approximate factorization dis- 
cussed in [13]. Those results show clear promise, but more 
experience of that and the present method is desirable to 

clarify the relative performance of each. Our experience is 
that for moderate viscosities, the present explicit treatment 
of advective terms can be quite effective. The limits of its 
utility are twofold. Application of Newton's method (8) in 
MN-dimensional space has the obvious restriction that the 
initial guess must fall within the basin of attraction of the 
desired solution. We leave the characterization of that to 
others and limit ourselves to simpler observation on the 
subiteration scheme (9), for which the origin of a time 
stepping restriction resides in the spectral radius of the itera- 
tion matrix for 

2 _ + #~x + 2 ~ )  6u(.+ - ~  r ~ C ~ x -~ Y (~ 2 3 4 1 , m +  1) 

= G(u(=~6u(= + 1,m~), (20) 

where At is adjusted to ensure convergence and accuracy 
with a fixed choice of M. A model problem to exhibit the 
potential difficulties of an explicit treatment of the advective 
term is the simpler hyperbolic problem s 

2 
Ataru(=+ l)=Ox u(=). (21) 

(There is no loss of generality in normalizing the wave speed 
to one.) This scheme will converge when 

(x) 

22~= < 1, (22) 

(x) where 2ma x is the largest eigenvalue of the ~x operator, and 
2(m'In, the smallest modulus eigenvalue of the 0, operator 
after reduction to ( M - 1 ) x  ( M - 1 )  to incorporate the 
implicit imposition of an initial condition on u (see, e.g., 
[12]). That eigenspectrum (which also characterizes the 0x 
operator when Chebyshev polynomials are used in x) is dis- 
played in Fig. 9 for M = 25. Computation of 2~I . is difficult 
for large M, becoming unreliable for M >  35 withdouble 
precision. Empirically, ~') .-~ ~ ~t where CM is a constant r~mi  n ~ M  zr~t, 

somewhat greater than 2. The scale of the largest eigenvalue 
of the dx operator depends upon the basis set. For the 
Fourier representation, though, it is simply N and thus (22) 
becomes 

N A t  
- -  < 1. ( 2 3 )  
2cMM 

5 Note that [14] presents an extensive treatment of the nonconstant 
coefficient hyperbolic problem including detailed error estimates for 
comparison with finite difference methods. The infinite order accuracy 
of spectral methods is there shown to be the most efficient strategy to 
achieve a given resolution. 

581/102/1-7 
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FIG. 9. Spectrum of the first derivative Chebyshev operator of order 
25 which satisfies an arbitrary boundary condition on the function at one 
end. Note the disparity in vertical and horizontal scales. 

Now 23 t iM is the coarsest mesh size for the interior 
Chebyshev collocation point spacing for the element inter- 
val of length At, while N is inversely proportional to the 
Fourier (equal) grid spacing in x; thus the time stepping 
restriction for subiteration assumes a familiar form: 
At < ~ Ax, with a coefficient of proportionality, ~, near unity 
(for a problem with unit wave speed). The neglected terms 
on the left-hand side of (20) simply shift the spectrum of 0~ 
in the complex plane. For the diagonal Fourier basis in x, 
the shift is elementary. Broadly speaking, the added terms 
render the estimate in (23) too pessimistic. 

When Chebyshev polynomials are used in x for the solu- 
tion of (21), the largest spatial eigenvalue scales as N 2, 
reflecting the high boundary layer resolution. The spectrum 
in Fig. 9 is instructive in showing that this extremal eigen- 
value is isolated. The remainder of the spectrum scales as N. 
The eigenfunction which accompanies this outlier is sharply 
boundary layered. At first glance, the N 2 dependence 
severely constrains the time stepping, a difficulty widely 
noted in the application of Chebyshev methods in space. Of 
course, the operator which concerns us in practice is not the 
linear one chosen here for simplicity, but the nonconstant 
coefficient operator. Sample computations show that often 
the pessimistic N 2 spectral range of the t3 x operator is 
sharply reduced for the full operator. This comes about 
when the convolution operator u (") yields small projection 
on the Nth row of the inverse eigenvector matrix e-1 in 
(19). This is not a rare occurrence. 

The ratio above in (22) could be improved by applying a 
shift to the operators on both sides. As a practical matter, 

however, overly large shifts lead to an iteration matrix all 
of whose eigenvalues are clustered near one, so the con- 
vergence rate tends to zero. Of course more sophisticated 
dynamic acceleration methods such as nonstationary 
Chebyshev or related methods may warrant consideration, 
but the general experience of runs on (2) including the 
Kuramoto-Sivashinsky limit is that time stepping is con- 
strained, not by divergence of either inner or outer iteration, 
but by the accuracy requirement. For low accuracy solu- 
tions, this would not continue to be the case. 

We have done some preliminary experiments, applying 
spectral methods in time to the unforced two-dimensional 
vorticity equation, 

ogt+J(~t, og)--vV2og, where (D = V2~/ (24) 

with doubly periodic boundary conditions at low resolu- 
tion. The obvious parallel of (9), namely, 

,~/l(n+ l,P+ l) ~ j ,  Ad,(n+l,P+l)+v(k2--}-lZ)vv, j,k,! 

= _ (k2 + ? ) - 1  [~e(~"~) + j(~<,l, ,~o~,+ 1.p)) 

+ j(~l/l(n+ 1, p), CO(n)]j,k,l (25)  

(where k and l are the x and y wavenumbers, respectively) 
gives iterative results generally in accord with the one- 
dimensional findings when used in our initial experiments 
on the evolution of a localized circularly symmetric vortex 
of Gaussian profile. We shall report on this at greater length 
in a subsequent paper, but one point we note in passing is 
that just as the evolution shown in Fig. 1 masks the great 
difficulty in accurately resolving the initial transient; so too 
for the two-dimensional problem with a circularly sym- 
metric initial condition embedded in a lattice of discrete 
symmetry do we find a sensitive initial phase of adjustment. 

A potential drawback of the application of (16) is the 
memory requirement for $4 and SM, which here runs to 
16MNxNytd bytes, where td is the allowed number of 
doublings and halvings of the nominal time step. The hybrid 
approach sketched at the end of Section II offers one resolu- 
tion to the excessive memory needed at high spatial resolu- 
tion. 
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